Читать онлайн Теорема зонтика, или Искусство правильно смотреть на мир через призму математики бесплатно
LE THEOREME DU PARAPLUIE
Où l’art d’observer le monde dans le bon sens
Mickaël LAUNAY (Illustrations by Chloé Bouachour) © Flammarion, Paris, 2019
© Сысоева И., перевод на русский язык, 2022
© Оформление. ООО «Издательство «Эксмо», 2022
Введение
В 1980 году преподаватели из института математических исследований университета Гренобля предложили группе детей решить следующую загадку:
В лодке 26 овец и 10 коз; сколько лет капитану?
Странный вопрос. Какое отношение возраст капитана имеет к количеству овец и коз? Из почти двухсот опрошенных в возрасте от семи до восьми лет 75 % респондентов ответили без каких-либо сомнений. Многие просто сложили представленные числа и получили 36. Но, когда детям в возрасте от девяти до десяти лет предложили ту же загадку, большинство из них начали протестовать или даже отказались отвечать. Только 20 % ответили безоговорочно. За два года их критический настрой обострился. Эти дети стали проницательнее и начали сомневаться в смысле того, что они делают.
В их возрасте, должен признаться, я получал особое удовольствие от загадок-ловушек. Таких, которые заставляют мозг кипеть и которые, по сути, скорее шутки, чем математические задачки. Одна из моих любимых звучит так:
Оркестр из 50 музыкантов исполняет Симфонию № 9 Бетховена за 70 минут. За какое время оркестр из 100 музыкантов сыграет ту же симфонию?
Конечно, продолжительность симфонии не зависит от количества музыкантов, 70 минут так и останутся 70 минутами. Мне очень нравилась еще и эта загадка: что тяжелее: килограмм ваты или килограмм железа? Конечно, ни то, ни другое, поскольку они весят одинаково – килограмм.
Чего я не знал, так это того, что укрощение смысла вещей может привести гораздо дальше, чем я себе представлял. Чем дальше я продвигался, тем больше замечал тонкости в значении слов и пробелы в моем понимании мира. Конечно, взрослые уже не попадаются в те же ловушки, что и дети. Но было бы неверно полагать, что мы защищены от других заблуждений, подстерегающих нас. Наша интуиция может нас обмануть, а факты оказаться ложными. В свои 35 лет я могу сказать, что с самой начальной школы в моей жизни не было и года, чтобы я не осознавал, что ошибаюсь в том, что, как мне казалось, хорошо знаю.
Если мы хотим понять мир и окружающую нас действительность, то рискуем сбиться с толку. В глубине души великие ученые нашей истории мало чем отличались от детей, которые отказались назвать возраст капитана. Ученые сомневались в том, что у них перед глазами, и стремились увидеть больше. Они восставали против установленного порядка. Наука – замечательная почва для сомнений, а математика – один из самых мощных инструментов.
Заниматься математикой – как заглянуть за кулисы мира. Украдкой понаблюдать за гигантскими винтиками, которые вращают нашу Вселенную. Зрелище ослепительное, но и разрушительное. Реальность бросает вызов нашим чувствам и интуиции. Все оказывается не тем, чем нам представляется. Действительность переворачивает наши убеждения с ног на голову, а самые, казалось бы, очевидные вещи, сметает с доски. Самые безобидные детали способны скрывать великие тайны, а детские загадки иногда могут оказаться намного глубже.
Вот еще одна:
Если четыре курицы откладывают четыре яйца за четыре дня, то сколько яиц откладывают восемь куриц за восемь дней?
Я дам вам время на размышления, мы еще к ней вернемся. О чем я никогда и подумать не мог, так это о том, что эта загадка, которую я впервые услышал в десять лет, поможет мне понять самую известную формулу всех времен.
Поэтому, если вы согласитесь ненадолго со мной остаться, я предложу вам отправиться в путешествие. Нам могут повстречаться некоторые трудности, ведь нельзя изменить свое мышление по щелчку пальцев. На нашем пути попадутся сомнения, которые придется преодолеть, и появятся мысли, которые придется оставить созревать. Но не сдавайтесь – потраченные усилия будут вознаграждены тысячекратно, когда вас наконец осенит. На следующей странице начинается наше путешествие по математике, в котором мы откроем некоторые из самых красивых скрытых механизмов нашего мира. Поднимите на мгновение ваши глаза и оглядитесь: возможно, после нашего знакомства вы перестанете воспринимать мир, ваш мир, таким образом.
Часть I. Закон супермаркетов
Закон Бенфорда
Математические приключения иногда встречаются в самых безобидных местах.
Давайте начнем наше путешествие в супермаркете на углу, всего в шаге от вашего дома. В нем вы обычно делаете покупки – неважно, гигантский это торговый центр или деревенский мини-маркет; главное, чтобы там были самые разные товары первой необходимости, которые мы покупаем каждый день.
Обычный магазин. Вы бывали здесь уже сотни, может, даже тысячи раз. Ряды полок, проходы, ровный ритм считывания штрихкодов на кассах и клиенты, которые бродят вокруг, машинально хватая то бутылку молока, то консервную банку. Но сегодня мы ничего не покупаем. Мы наблюдаем.
Здесь спрятан один из самых интригующих математических самородков. Он всегда был тут – прямо у вас перед носом. И он даже не скрывается, вы видите его прямо сейчас. Небольшая аномалия. Пустяковая деталь, которая не привлекает внимания, тем не менее может вызвать подозрение у опытных наблюдателей. Достаньте блокнот или смартфон, нам он понадобится для заметок, и давайте начнем наше расследование.
Посмотрите на цены, выстроившиеся в ряд на полках. €2,30… €1,08… €12,49… €3,53… все эти числа кажутся совершенно случайными, если их быстро читать одно за другим. €1,81… €22,90… €0,64… цены варьируется от нескольких центов до нескольких десятков евро. Но мы не будем заострять внимание на деталях. Забудьте о запятых и сотых долях.
На каждом ценнике смотрите только на первую цифру, самую важную – она дает нам первое, приблизительное представление о цене. (Такие цифры в математике называют «значащими»).
Вот 530-граммовая банка консервированной брюссельской капусты за €1,54. Отметьте в вашем блокноте 1. Чуть дальше дезодорант, действующий 24 часа, за €3,53. Отметьте 3. 250 грамммов камамбера за €1,81. Еще одна 1 в вашем блокноте. Сковорода с антипригарным покрытием за €45,90 – здесь мы перевалили за десятку, но, несмотря ни на что, сосредоточиваемся только на первой цифре. Отмечаем 4. Пакет жареного арахиса за €0,74. В этот раз первая значащая цифра – 7.
Так, несколько минут блуждая по магазину, мы набрали цифры. 1 3 1 4 7 9 2 2 1 7 9 8 1 1 3 1 1 1 8 1 1 2 1 2 1 1 9 1 4 7 1 6 1 5 9 2 2 1 3 2 2 2 1 2 2 6…
Но отмеченные вами цифры вызывают смутное сомнение. Вам не кажется, что в этой череде что-то не так? Некий дисбаланс. Она преимущественно состоит из 1 и 2, перемежаясь то тут, то там 3, 4, 5, 6, 7, 8 и 9. Как будто мы, сами того не осознавая, обращали наше внимание на самые низкие цены. Так не пойдет.
Так что давайте поступим как добросовестные статистики. Оставим в стороне наши предубеждения и выберем систематический метод. Мы случайным образом укажем на несколько полок и выпишем значимые цифры со всех товаров без исключения. Да, это трудоемкая задача, но мы должны разобраться с ней до конца.
Через час страницы вашего блокнота покрыты рядами цифр. Пришло время подвести итоги. После подсчета вердикт не подлежит обжалованию, и тенденция подтвердилась. Вы перечислили цены на более чем тысячу товаров, и почти треть из них начинается с 1! Чуть больше четверти начинается с 2, и чем больше цифра, тем реже она встречается.
После компиляции мы пришли к следующим результатам[1].
В этот раз мы не можем сослаться на случайность или предвзятый выбор товаров. У нас есть доказательства, а потому надо признать факт: первые цифры цен в супермаркете распределены неравномерно. Преобладают – со значительным отрывом – небольшие цифры.
Откуда этот дисбаланс? Вот вопрос, который я хотел бы вам задать. Какому закону супермаркетов, торговли или экономики подчиняются эти ценники, чтобы дать такое странное, такое неравномерное распределение первых цифр? Разве математика не должна относиться ко всем цифрам[2] одинаково – без предвзятости, без предпочтений, без фаворитов? И все же факты налицо и категорически утверждают обратное: в супермаркете у математики есть любимчики – цифры 1 и 2.
Мы провели наблюдение. Мы установили закономерность. Теперь нам остается только подумать над ней, проанализировать и разобраться. У нас есть факты, и мы должны провести расследование и сделать свои выводы.
В марте 1938 года американский инженер и физик Фрэнк Бенфорд опубликовал статью «Закон аномальных чисел» (The Law of Anomalous Numbers), в которой он проанализировал числовые данные, полученные из более чем двадцати тысяч источников различного происхождения. В его таблицах можно найти список длин рек из разных частей земного шара, население разных городов США, атомные массы известных элементов, числа, случайно наблюдаемые в газетах, или математические константы. И по всем этим данным Бенфорд делает тот же вывод, что и мы: первые цифры распределены неравномерно. Около 30 % проанализированных чисел начинаются с 1, 18 % – с 2, и чем больше цифра, тем реже она встречается; так, только 5 % чисел начинаются с 9.
Бенфорду не пришла в голову идея проверить свою статистику в магазине. Но согласитесь: его результаты удивительно похожи на наши. Конечно, есть некоторые различия в процентах, но в общих чертах совпадение поразительно.
Исследование Бенфорда показало, что собранные нами данные – далеко не единичный пример. Они характерны не только для супермаркетов, но вписываются в гораздо более широкую тенденцию. После 1938 года такое же распределение наблюдалось многими учеными во множестве необычных и разнообразных ситуаций.
Например, в демографии. Население 62 из 203 стран на планете Земля – или 30,5 % – записывается числом, которое начинается с цифры 1. Взять, к примеру, самую густонаселенную: Китай с населением 1,4 млрд человек. К этим 62 странам также относится Мексика с населением 122 млн человек, Сенегал с населением 13 млн или архипелаг Тувалу с населением 10 800. При этом лишь в 14 странах (6,9 %) запись числа населения начинается с цифры 9.
Вам предпочтительнее астрономия? Из восьми планет, вращающихся вокруг Солнца, у четырех запись длины экваториального диаметра[3] начинается с цифры 1. У Юпитера – 142 984 км, у Сатурна – 120 536, у Земли – 12 756, у Венеры – 12 104. Диаметр самого Солнца составляет 1 392 000 км. И если выборка из девяти небесных тел недостаточно полна, чтобы вас убедить, добавьте сюда же карликовые планеты, спутники, астероиды, а также кометы, и вы все равно придете к тому же выводу: превалирует цифра 1.
Как только мы начинаем обращать на это внимание, примеры сыплются дождем. Возьмите любой набор чисел в любом контексте, проанализируйте первые цифры, и увидите: закон Бенфорда работает. Этот статистический закон совсем не исключительный, он, похоже, совершенно естественный и повсеместный. И, как ни парадоксально, равномерного[4] распределения цифр, которое могло бы показаться нам более интуитивно-вероятным, на практике просто не существует.
Здесь речь идет уже не о любопытном свойстве цен в супермаркетах. То, что мы обнаружили, – это настоящий закон, который регулирует не только многие области человеческой деятельности, но и саму природу. Понять этот закон – значит понять нечто фундаментальное об устройстве нашего мира.
Его влияние настолько велико, что мы подчиняемся ему, даже не осознавая этого. Люди, которые устанавливают цены в магазинах, не договариваются друг с другом и едва ли слышали о Фрэнке Бенфорде. И все же, неосознанно, словно ими манипулирует неподвластная им сила, они подчиняются его закону. Как и население стран, длины рек и диаметры планет.
В 1938 году Фрэнк Бенфорд назвал это распределение «законом аномальных чисел». Тем не менее этот закон настолько распространен, что такое название кажется неуместным. Аномальность субъективна и существует только в умах людей, которые ей поражаются. Природа, напротив, кажется, находит этот закон универсальным. Закон аномален только до тех пор, пока мы его не поймем. И мы намерены его понять.
Но в каком направлении двигаться? Как направить наши мысли, чтобы приоткрыть завесу тайны и понять аномалии?[5]
Закон Бенфорда несложно понять, но его объяснение не уложить в несколько строк. Математика, которая скрывается за ним, проста, но глубока. Это не загадка, решение которой неожиданно приходит в голову, и мы восклицаем: «Ах! Вот, в чем дело, я понял!» Нам придется поменять наше понимание природы чисел и сам подход к счету. Если закон Бенфорда не кажется нам очевидным, то это потому, что мы неправильно думаем. Нам придется научиться по-другому смотреть на то, что нам кажется таким знакомым. Нам придется снова ставить под сомнения свои суждения.
Из экскурсии по миру, который только что нам открыл Фрэнк Бенфорд, мы вернемся другими. Его закон изменит вас. И когда вы его поймете, вы будете думать совсем иначе.
Мультипликативное мышление
Повседневность часто намекает, что мы плохо управляемся с числами. Что с нами – или с ними – что-то не так.
У меня есть небольшая история на эту тему.
Несколько лет назад на вечеринке, которую мы с друзьями посвятили играм, кому-то пришла в голову идея устроить научную викторину. Мы разбились на две команды и отвечали на вопросы из разных сфер: от математики и геологии до биологии и информатики. На каждый вопрос команда должна была дать приблизительный ответ в численном выражении, и та, чей ответ был ближе всего к верному, зарабатывала очко. Правило казалось довольно простым и ясным. И все же после нескольких раундов вопрос из области астрономии вызвал неожиданный спор.
Нас спросили, каково расстояние между Землей и Луной.
В нашей команде никто не знал точного ответа, но, поразмыслив, мы ответили, что оно составляет 800 000 км. В команде противника переговоры оказались куда более напряженными, но в конце концов они объявили свой ответ: 10 км!
Очевидно, в этой команде в астрономии разбирались еще хуже, чем в нашей. Высочайшая вершина Земли, гора Эверест, достигает в высоту почти 9 км. Если бы Луна находилась всего в 10 км от Земли, чтобы коснуться нашего спутника, достаточно было бы подняться на гору. Абсурдный ответ. Еще одно очко, казалось мне, у нас в кармане.
Тем не менее правильный ответ нас озадачил. Луна на самом деле находится на расстоянии 384 000 км от Земли. Таким образом, простое вычитание показало нам, что мы ошиблись на 416 000 км, в то время как команда противника ошиблась только на 383 990 км.
Я моргнул и посчитал еще раз. Ошибки не было. Признаться, я даже нацарапал небольшую схему на бумажной салфетке, чтобы окончательно убедиться.
Сомнений не было: их ответ был ближе к правильному, чем наш. Они победили. Несколько минут я пересчитывал и прокручивал расчет в голове, но ничего не поделаешь. Математика была категорична.
Но все же, вам не кажется, что эта ситуация несправедлива? Да, возможно я выгляжу, как человек, который не умеет проигрывать, но вы не думаете, что, несмотря на результат, наш ответ был более разумным, более продуманным и, в некотором смысле, менее неправильным, чем у другой команды?
Но почему в таком случае математика говорит об обратном? Почему расчеты показывают, что почти абсурдный ответ ближе к истине?
Или стоит задать вопрос немного по-другому: правильно ли мы понимаем математику, которой пользуемся? Математика не ошибается, но люди, которым она служит, иногда могут использовать ее ненадлежащим образом.
Если немного подумать, то можно представить множество подобных ситуаций. Рост кошки в среднем составляет 25 см, а лабрадора – 60 см. Некоторые бактерии достигают в длину одну тысячную миллиметра. Таким образом, можно утверждать, что по размеру кошка ближе к бактериям, чем к лабрадору. Разница в росте между кошкой и бактериями составляет около 25 см, а между кошкой и собакой – 35 см.
Но это заключение, к которому нас подводят числа, снова противоречит нашему естественному восприятию реальности. Кошка и собака принадлежат к одному миру. Они могут играть вместе или, по крайней мере, взаимодействовать. Они видят друг друга, чувствуют друг друга, они знают, что оба существуют. Но кошка, если, конечно, она не изучала науку, понятия не имеет о существовании бактерий. Они не являются частью ее мира, они настолько малы, что их невозможно ни увидеть, ни даже вообразить.
Можно привести еще несколько похожих примеров, которые кажутся интуитивно нелогичными, но все же математически точными. Температура на поверхности Солнца ближе к 5 °C, чем к 15 000 °C. Население Парижа ближе к населению деревни с 12 жителями, чем к населению Нью-Йорка. Если вы взвесите планету Марс, то обнаружите, что ее масса ближе к массе мячика для пинг-понга, чем к массе Земли.
Как и в случае с законом Бенфорда, эти ситуации ставят нас в логический тупик только потому, что мы думаем неверно. Потому что мы используем математический инструментарий, который плохо понимаем, в контексте, в котором он неуместен.
Как же тогда воплотить эти интуитивные размышления в математике? Ответ можно найти в тонком понятии порядка величины.
Сама идея простая, но невероятно мощная. Думать посредством порядка величины – значит думать с помощью умножения, а не сложения.
Если вы хотите сравнить числа 2 и 10, вы можете сделать это двумя разными способами. Путем сложения: сколько нужно добавить к 2, чтобы получить 10? В таком случае ответ 8. Или путем умножения: на сколько нужно умножить 2, чтобы получить 10? Тогда ответ равен 5. В первом случае разница между двумя числами получается путем вычитания: 10 ÷ 2 = 8. Во втором – деления: 10 ч 2 = 5.
Сказать, что два числа имеют одинаковый порядок величины, значит сказать, что они близки с точки зрения умножения.
Несмотря на то, что на первый взгляд эта идея кажется довольно странной, любой, кто начинает мыслить мультипликативно, то есть посредством умножения, быстро понимает, насколько этот подход лучше соответствует нашей интуиции.
Вернемся к нашей научной викторине. Вот как я мог бы отстоять нашу победу в игре, если бы тогда мыслил здраво. Луна находится на расстоянии 384 000 километров от Земли, а наша команда ответила, что на расстоянии 800 000 км, то есть примерно в два раза дальше. Если мы поделим числа, то окажется, что наш ответ был в 2,08 раза больше верного. Наши противники ответили, что расстояние составляет 10 км, то есть в 38 400 раз меньше правильного ответа! С этой точки зрения мы действительно победили. Более того, этот результат гораздо лучше соответствует нашему интуитивному восприятию мира.
Такой подход сработает и со всеми остальными примерами. Если считать мультипликативно, то размер кошки ближе к размеру собаки, чем к размеру бактерии, масса Марса ближе к массе Земли, чем к массе мячика для пинг-понга, население Парижа ближе к населению Нью-Йорка, чем к населению маленькой деревни, и так далее.
Когда мы сравниваем два числа, независимо от контекста, в котором происходит это сравнение, чаще всего мы интуитивно прибегаем к мультипликативному мышлению. Если в вашем супермаркете товар стоимостью 200 евро подорожает на 8 евро, то, несомненно, это подорожание вас расстроит, но гораздо меньше, чем если бы на те же 8 евро подорожал товар стоимостью 2 евро. В таком случае цена увеличивается до 10 евро, то есть в 5 раз! Расстроиться – это мягко сказано. И это при том, что номинально цены выросли на одну и ту же величину.
Таким подходом к сравнению мы обязаны не только работе интеллекта. Это не уникальное свойство мышления, он естественен для нас и моделирует большинство наших взаимодействий с миром. Наше чувственное восприятие окружающего мира тоже мультипликативно.
Если я завяжу вам глаза и вложу в одну руку предмет весом 10 г, а в другую – весом 20 г, вы сразу же поймете, какой из них тяжелее. Но различить «на ощупь» предметы весом 10 кг и 10 кг и 10 г куда сложнее. Однако разница в парах одинаковая: 10 г. Или, точнее, разница одинаковая с точки зрения сложения, или аддитивности, потому что с точки зрения умножения она вопиющая: 20 г в два раза тяжелее, чем 10 г. Во втором же случае разница между двумя массами составляет всего 0,1 %.
То же можно сказать и про наше зрение. Вы когда-нибудь пробовали включить свет средь бела дня? Если солнце уже заливает комнату, это почти ничего не меняет. Яркость кажется одинаковой независимо от того, светит лампочка или нет. Но если вы включите свет ночью, то ясно увидите, как он освещает самые темные уголки, которые мгновение назад терялись в полумраке.
Тем не менее днем лампочка излучает не меньше света, чем ночью. То есть с точки зрения сложения яркость одинакова в обеих ситуациях. Но наши глаза воспринимают эту яркость иначе – относительно, то есть мультипликативно. При дневном свете яркость лампочки незначительна по сравнению с яркостью Солнца. Ночью же все меняется – она правит бал.
Это справедливо и для остальных органов чувств: осязания, зрения, вкуса, слуха, обоняния. Подумайте хотя бы о том, как вы воспринимаете течение времени, преодоленное расстояние, и, что более субъективно, интенсивность эмоций, которые испытываете. Все эти чувства гораздо проще поддаются пониманию, когда вы начинаете думать о них мультипликативно, а не аддитивно.
Наше врожденное чувство чисел
Чтобы проверить ваше чувство чисел, я предлагаю вам небольшой эксперимент. Посмотрите на этот отрезок, на котором размещены два числа: тысяча и миллиард.
Теперь постарайтесь без раздумий, инстинктивно ответить на следующий вопрос: где на этом отрезке вы отметите миллион? Не бойтесь ошибиться, правильным будет любой ответ – важно узнать, как работает ваша интуиция с большими числами.
Итак, вы указали на отрезке точку, где, по вашему мнению, находится миллион. Давайте посмотрим, о чем нам это скажет.
Вероятнее всего, в поисках ответа ваш мыслительный процесс развивался поэтапно. Как только вы ознакомились с вопросом, ваш мозг интуитивно выдал ответ. Грубо и без анализа. Затем настал черед более сложных умозаключений. Вы вспомнили все, что знаете о числах тысяча, миллион и миллиард, и выбранная вами точка немного переместилась на отрезке. Или даже сильно переместилась. Влево или вправо? Вероятно, вы также приняли во внимание то, о чем мы говорили ранее. Возможно, вам показалось, что вопрос сформулирован не очень точно, что в нем есть какой-то подвох. Вы ответили на вопрос с точки зрения аддитивности или мультипликативности? Это что-то меняет в данном случае?
Каждый ответит на этот вопрос по-своему, но одна реакция будет превалировать – сначала представить миллион примерно на середине отрезка. Или немного левее середины, потому что заключить, что миллион ближе к тысяче, чем к миллиарду, можно достаточно быстро. Но по мере дальнейших размышлений над вопросом точка на отрезке будет смещаться левее, все ближе к тысяче.
Так в чем же дело? Прозвучит неожиданно, но миллион находится совсем рядом с тысячей. В заданном масштабе невооруженным глазом их даже не различить, и оба числа будут располагаться практически там же, где и ноль, если добавить на наш отрезок и его.
Конечно, в абсолютном выражении миллион – это большое число, но миллиард все же в тысячу раз больше! В таких масштабах даже миллион – это совсем немного. Если бы вы стояли в точке ноля, а миллиард находился в километре от вас, то миллион был бы от вас всего в одном метре, а тысяча – в одном миллиметре. А если взглянуть издалека, то покажется, что ноль, тысяча и миллион расположены в одной точке.
Тем не менее, как и в случае с расстоянием до Луны, математический вердикт интуитивно сложно принять. Если записать числа цифрами, миллион займет свою законную позицию посередине между тысячей и миллиардом.
Тысяча: 1000
Миллион: 1 000 000
Миллиард: 1 000 000 000
В миллионе на три нуля больше, чем в тысяче, и на три меньше, чем в миллиарде. Визуально, если мы уделяем внимание не самой величине числа, а длине его написания, у нас возникает откровенный соблазн поместить миллион в середину. Сама природа нашей системы счисления, как правило, заставляет нас думать мультипликативно. Визуальное впечатление было бы совсем иным, если бы эти числа записали римскими цифрами или если бы мы начертили палочки. В нашей системе единиц, десятков, сотен и т. д. добавление нуля приводит к тому, что представленное число умножается на десять, внося путаницу между сложением и умножением.
Таким образом, если мы расставим числа на отрезке, в соответствии с мультипликативным подходом, миллион будет точно посередине. И слева, и справа мультипликативный разрыв между числами будет равен тысяче.
Странно, что этот феномен не наблюдается, когда речь идет о не таких больших числах. Если бы я попросил вас разместить число 50 на отрезке от 1 до 100, вы без малейших колебаний поместили бы его посередине.
Надо заметить, что слова французского языка передают конфликт между аддитивным и мультипликативным.
У первых десятков есть свое название: двадцать, тридцать, сорок… Разница между названиями аддитивна. На каждом шаге мы прибавляем десять.
До 100 язык аддитивный.
Когда мы перевалим за 100, в дело вступает умножение. Для обозначения 200 или 300 отдельных слов нет. Мы просто говорим «две сотни» или «три сотни»[6]. Как если бы мы говорили «два-десять» и «три-десять» вместо «двадцать» и «тридцать». Далее слова образуются с мультипликативной скоростью: тысяча, миллион, миллиард, триллион, квадриллион… Каждый из этих терминов в тысячу раз больше предыдущего.
Если бы мы поместили эти числа на отрезок и считали аддитивно, все они стремились бы к нулю и выглядели бы крошечными по сравнению с последним числом. Миллиард ничтожен по сравнению с триллионом, который сам по себе смехотворно мал по сравнению с квадриллионом, и так далее.
Школьная математика практически не обращает внимания на этот словарный переход от сложения к умножению. Однако он сильнейшим образом влияет на наш образ мышления. Наше восприятие чисел не является ни врожденным, ни объективным. Оно накрепко связано с тем, как мы изучали математику.
Впрочем, давайте ненадолго забудем о наших знаниях и культурных предубеждениях и вернемся к изначальному восприятию чисел. Как бы мы мыслили, если бы с детства не сталкивались со школьной математикой?
Это можно попытаться выяснить у людей, которых эти знания обошли стороной. Например, у детей, еще слишком маленьких, чтобы углубиться в изучение чисел. Или у туземцев, чье отношение к числам, свободное от условностей и предвзятостей цивилизации, сильно отличается от нашего.
В 2000-х годах исследовательские группы проводили различные эксперименты, чтобы ответить на эти вопросы. Маленьким детям из Соединенных Штатов, а также представителям народа мундуруку, живущего в лесах Амазонии на севере Бразилии, предложили выполнить тесты, очень похожие на те, которые я вам продемонстрировал. В языке этого индейского народа нет слов для обозначения чисел больше пяти – их восприятие величин радикально отличается от нашего.
Испытуемым показывали отрезки, концы которого соответствовали двум числам. А затем их просили разместить на этом отрезке другие числа. Конечно, числа должны были быть представлены в форме, понятной людям, которые никогда не изучали математику. Эти тесты проводились в разных форматах: например, визуально – с изображениями, содержащими несколько точек, – или на слух, при помощи звуковых сигналов. Перед началом теста испытуемым тщательно объясняли правила.
Полученные результаты последовательны и однозначны: дети и мундуруку интуитивно воспринимают числа скорее мультипликативно, чем аддитивно. Вот, например, как индейцы разместили числа на отрезке от 1 до 10.
Конечно, этот тест не идеален. Он слишком интуитивен, а точно оценить значение сразу нескольких показателей навскидку совсем не просто. Так, мы видим, что число 5 на шкале в среднем располагали за числом 6! Но важно не это. Важно отметить, как широко расставлены малые числа, в то время как бо́льшие громоздятся друг на друге в конце отрезка. Как будто небольшие числа, такие как 1 и 2, имеют большее значение, чем такие как 8 и 9 – те вынуждены тесниться.
Не кажется ли вам, что у этих результатов есть некое сходство с законом Бенфорда? Это простое совпадение или же мы на пороге какого-то открытия? Сейчас связь между ними не очевидна, но давайте запомним эту идею – вскоре у нас будет возможность вернуться к ней.
Эта тенденция подтверждается во всех проведенных тестах. Включая и тесты на числа до 100, которые проводились с детьми. Например, чаще всего ребенок на отрезке от 1 до 100 отметит 10 примерно посередине. Результат интригует: ведь поставить 10 ровно между 1 и 100 можно, только если мы мыслим мультипликативно.
Что, если мы пойдем еще дальше?
В XX веке было проведено несколько экспериментов, доказывающих, что такое восприятие чисел свойственно не только человеку. Что это можно проследить и у других видов, не только Homo sapiens.
Многие животные обладают естественным чувством количества. Хотя бы для того, чтобы оценить объем пищи, который им нужно накопить, или количество хищников, которых им нужно избежать, чтобы выжить. Их чувство величины довольно приблизительно и ограниченно по сравнению с человеческим, тем не менее удивительно.
Условия экспериментов с животными и интерпретация их результатов требуют гораздо более тонкого и тщательного подхода. С лошадьми, птицами или шимпанзе невозможно вести прямой диалог, подробно объяснить им правила эксперимента или заставить их понять цель того, что они делают. Однако некоторые факты поражают, потому что, похоже, некоторые животные воспринимают числа мультипликативно.
Вот пример эксперимента с крысами. Несколько особей поместили в клетки, внутри которых находились два рычага. Затем исследователи регулярно подавали крысам серию звуковых сигналов. Иногда два сигнала, иногда – восемь. Когда было всего два звуковых сигнала, крысам давали пищу при условии, что они нажимали на первый рычаг. Когда сигналов было восемь – при нажатии на второй рычаг. Некоторое время спустя грызуны поняли принцип и научились правильно нажимать на рычаг в зависимости от количества звуковых сигналов.
После того как крысы научились работать с рычагами, начался сам эксперимент. Что произойдет, если изменить количество звуковых сигналов? После трех сигналов, немного помедлив, крысы шли к первому рычагу, как в случае с двумя звонками. После пяти, шести или семи сигналов крысы выбирали второй рычаг, как в случае с восемью. Но после четырех сигналов они запутались! Половина крыс нерешительно подходила к первому рычагу, а другая половина – ко второму. Как будто для них число четыре оказывалось посередине между двумя и восемью, делая их выбор совершенно случайным.
Без сомнения, вы уже догадываетесь, какой напрашивается вывод: мультипликативно 4 находится посередине между 2 и 8. Если бы крысы рассуждали аддитивно, их смутила бы цифра 5. Но камнем преткновения для них стало все же число 4.
Подобные эксперименты проводились с другими наборами чисел и другими животными. Конечно, трудно понять, что происходит в головах этих маленьких существ, и результаты порой дают серьезную погрешность. Но несомненно одно: каждый раз животные терялись, когда сталкивались с числами, которые находятся в середине какого-либо отрезка с точки зрения мультипликативности, а не аддитивности.
Пытаясь выяснить сами истоки нашего понимания чисел, мы неизбежно приходим к одному и тому же выводу: наше естественное чувство величин преимущественно мультипликативно.
Тем не менее очевидно, что ни один мозг, будь то человеческий или животный, не даст точных ответов на поставленные вопросы без обучения. Мультипликативное мышление не является ни осознанным, ни точным. Полученные результаты спонтанны и интуитивны, как и ваша первая интуитивная реакция, когда вы поместили миллион в середину отрезка от тысячи до миллиарда. Они не свидетельствуют о математических знаниях, а просто демонстрируют работу врожденного, по-видимому, механизма, который наделяет нас преимущественно мультипликативной интуицией на числа.
Аналогичные тесты проводились со взрослыми американцами, и они ясно продемонстрировали, что по мере изучения математики мультипликативная интуиция постепенно исчезает. Для чисел от 1 до 10 взрослые выбирают исключительно аддитивный подход. Однако мультипликативный инстинкт не исчезает полностью, появляясь при работе с большими, наиболее сложными числами.
Таким образом, аддитивный подход не так спонтанен. По большому счету это всего лишь привычка, выработанная в детстве. В своей статье 1938 года Фрэнк Бенфорд писал: «Мы так привыкли все нумеровать как 1, 2, 3, 4…, при этом считая это естественным порядком вещей, так что сама идея принять нумерацию вида, допустим, 1, 2, 4, 8… кажется невозможной».
Возможно, вам все еще трудно это принять. Трудно отказаться от воспитываемого в нас аддитивного подхода. Если это так, не беспокойтесь, читайте дальше, позвольте себе увлечься. Вы увидите, как это увлекательно – открывать для себя новый способ мышления.
Однако возникает вопрос: если наша врожденная интуиция мультипликативна и если она больше подходит для осмысления окружающего нас мира, то почему мы так стараемся изгнать ее из наших умов? Зачем навязывать себе аддитивное мышление, которое меньше соответствует реальности? Неужели школьная математика оттолкнула нас от здравого смысла, заменив его искусственным и неадаптивным мышлением?
Стоит ли отказываться от аддитивного мышления?
Ответ – нет. Само по себе аддитивное мышление нельзя отбросить. Оно даже полезно во многих ситуациях. Когда в следующий раз вы будете рассчитываться на кассе в магазине, вы явно предпочтете сложение умножению. Также очевидно, что нет смысла убеждать вас, что, несмотря на все, что мы только что узнали, сложение и вычитание по-прежнему являются неотъемлемой частью нашей повседневной жизни: не настолько, как мы привыкли думать, но все же достаточно.
Кроме того, само умножение нуждается в сложении. Мультипликативный характер нашей интуиции сам по себе вовсе не облегчает понимание математики умножения. Без изучения математики свой интуитивный потенциал полностью реализовать невозможно. И для этого очень важно хорошо усвоить сложение, чтобы затем перейти к более глубокому изучению умножения.
Итак, как же лучше сравнить два числа?
На этот вопрос нет абсолютного и окончательного ответа. Решает только контекст. И иногда выбор сделать трудно. Существуют неоднозначные и спорные ситуации, в которых нет наилучшего варианта. Сложение и умножение просто предлагают два разных, но комплементарных взгляда на числа.
Такой вывод может показаться неудачным. В конце концов, разве математика не должна давать точные и окончательные ответы? Как точная наука может руководствоваться подходом «зависит от»? Под этим кажущимся парадоксом скрывается вся творческая неоднозначность математики. Этих «зависит от» в математике бесконечное множество. И именно благодаря им она превращается в территорию свободы и творчества. Математика неоднозначна, многоаспектна, относительна, и это делает ее еще лучше.
Принять эту относительность и научиться с ней играть – значит найти неиссякаемый живительный источник открытий и инноваций. Математика предлагает тысячи различных инструментов для решения одного и того же вопроса. И эти инструменты как клавиши пианино. Знать их – это сольфеджио, уметь на них играть – искусство. Спросить, лучше ли сравнивать два числа с помощью сложения или умножения, все равно что спросить, в какой тональности лучше сочинять мелодию: соль мажор или ля минор. Делайте свой выбор. Возможно, он не всегда будет удачным, но это не имеет значения.
Можно любить играть на пианино, не будучи Моцартом. Можно любить играть в математику, не будучи Эйнштейном. Не бойтесь: чем больше вы играете, тем более утонченным будет ваш вкус. И тем больше музыка чисел будет очаровывать ваш разум.
Письменность без нулей и запятых
Пришла пора немного покопаться в прошлом наших исследуемых. Чтобы понять, что происходит во взаимном соперничестве сложения и умножения, нам надо вернуться к самим истокам математики. Откуда к нам пришли эти математические операции? Какая у них история и как они стали такими, какими их знаем мы?
Ненадолго закройте глаза, сделайте глубокий вдох – наше новое путешествие начинается. Мы направляемся на Ближний Восток, на территорию нынешнего Ирака. Там мы погрузимся в запутанное и далекое прошлое, которое бережно хранит несколько неразрешимых секретов о числах и математических операциях.
Давайте отправимся на четыре тысячелетия назад.
На плодородных равнинах Вавилонии процветает одна из первых цивилизаций. Вот уже несколько столетий на берегах Тигра и Евфрата растут красивые богатые города с глиняными постройками характерного красно-охристого цвета. В самых крупных из них проживает несколько десятков тысяч жителей. Здесь в основном говорят на аккадском, но можно услышать и несколько других языков. Письменность изобрели уже более тысячи лет назад, и знания передавались и расширялись из поколения в поколение. Сформировались сложные системы управления. Быстрыми темпами развивалась торговля.
Именно здесь, в этих древних городах, появились первые школы писцов, в которых аккумулировались и передавались самые важные знания и умения. Прежде люди осваивали навыки прямо на рабочем месте, практикуясь в своем ремесле. Родители учили своих детей, ремесленники – своих подмастерьев; обменивались знаниями и люди, занятые в одной области. Конечно, в предшествующие столетия уже появилось несколько школ, но в большинстве своем они были плохо организованы и маргинальны. В конце третьего тысячелетия до нашей эры система образования начала развиваться и структурироваться, и во всех крупных городах стали появляться эдуббы, или «дома табличек». Именно в один из таких эдуббов мы и отправимся.
Вот мы на берегу Евфрата, у ворот Ниппура. Город занимает площадь более одного квадратного километра. В его сердце возвышается храм верховного бога Энлиля – Экур, «горный дом», покоряющий путников. Обойдя его с запада, мы увидим храм Инанны, богини любви и войны. Вдоль его стен прорыт канал; крики торговцев и лодочников, суетящихся на пристанях, наполняют эхом улицы.
Пройдя метров двести вдоль берега, а затем повернув налево, мы окажемся в квартале писцов. На этом небольшом холме, немного в стороне от центра, расположены несколько десятков низких домиков с открытыми дворами. Через сорок веков на этом холме найдут более тысячи глиняных табличек, покрытых убористым почерком писцов, и археологи назовут это место Холмом табличек.